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Abstract. The operation of D-differentiation, introduced by Hurley and Vandyck (Hurley D
and Vandyck M 1999 submitted), and briefly summarized here, is applied to the treatment of
the semiclassical motion of electrons in crystals. It is shown that the corresponding trajectories
are remarkable geometrical curves, called euthygrammes, which generalize the geodesics of
Riemannian manifolds.

1. Introduction

In previous articles [1,2], we introduced the new operation of D-differentiation of a tensor or a
spinor field on a manifold, and we studied some of its properties. We are currently engaged in
work that will show how D-differentiation provides insight into some areas of physics, and, in
this paper, we shall investigate the semiclassical trajectories of electrons in a crystal. We shall
establish thatD-differentiation enables one to interpret these trajectories in a manner analogous
to that employed in general relativity for the motion of test particles in a gravitational field,
where the trajectories are geodesics in a Riemannian manifold [3]. On the other hand, as we
shall see, electron trajectories in a crystal are remarkable curves, called euthygrammes, which
generalize geodesics to D-differentiation.

In order to render this work reasonably self-contained, we shall briefly recall hereafter, in
section 2, fundamental aspects of D-differentiation. Euthygrammes will then be defined and
studied in section 3. Finally, in sections 4 and 5, we shall turn our attention to electrons in
crystals.

2. Fundamental aspects of D-differentiation

D-differentiation is an operation which generalizes simultaneously Lie and covariant
differentiation [1, 2]. It may act on tensor or spinor fields, but we shall henceforth restrict
our attention to tensor fields.

By definition, D-differentiation preserves tensor rank, commutes with tensor contractions
and is linear, in the sense that

DX(T + U) = DXT + DXU (2.1)

DX(kT ) = kDXT (2.2)

∗ Dedicated to our former Colleague, the late John Delaney.
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for all tensor fields T and U (of the same rank), all vector fields X and all constants k. It also
satisfies the Leibniz rule

DX(T ⊗ U) = (DXT ) ⊗ U + T ⊗ (DXU) (2.3)

for all tensor fields T and U , and all vector fields X. Moreover, for compatibility with the
action of a vector field X on a function f , which is a tensor of rank (0, 0), one imposes the
condition that

DXf := X(f ) = df (X). (2.4)

These axioms determine the action of D-differentiation on a tensor field of arbitrary
rank [1,4] in terms of its action on a basis {�e(i)} of the tangent space to the manifold M under
consideration. This action is defined by

DX�e(j) := �i
j (X)�e(i) (2.5)

for some functions �i
j (X). The D-derivative DXY of a vector field Y along a vector field X

then reads

DXY = DX(Y
i �e(i)) (2.6)

= {X(Y i) + �i
j (X)Y

j }�e(i). (2.7)

In practice, �i
j (X) is given in terms of the components Xk of X by

�i
j (X) := λijk X

k − A
i a

j b �e(a)(Xb) (2.8)

where the Ai a

j b are the components of a tensor field. On the other hand, the symbols λijk do
not constitute a tensor, but satisfy the transformation law

λ′i
jk = Mi

a λ
a
bc N

b
j N

c
k − Mi

a N
b
j A

a c
b d �e(c)(Nd

k) + Mi
a �e(c)(Na

j )N
c
k (2.9)

under the change of basis

�e′
(i) = �e(j)Nj

i (2.10)

for a given matrix N , and its inverse M . Moreover, after insertion of (2.8) in (2.7), the explicit
form for DXY in terms of the components of X and Y becomes

DXY = {X(Y i) + λijkX
kY j − A

i a

j bY
j �e(a)(Xb)}�e(i). (2.11)

The couple (λijk, A
i a

j b) characterizes each D-differentiation operator. For instance, Lie
and covariant differentiation are obtained from (2.11) with the following choice of symbols:

(λijk, A
i a

j b) = (�i
jk, 0) for covariant differentiation (2.12)

= (−Di
jk, δ

i
b δ

a
j ) for Lie differentiation (2.13)

in which �i
jk and Di

jk are the connection coefficients and the anholonomicity of the basis:

[�e(i), �e(j)] = Dk
ij �e(k). (2.14)

No further properties of D-differentiation are required for our subsequent investigations.
We are going to establish, in the next section, how D-differentiation enables one to generalize
the concept of a Riemannian geodesic.
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3. Euthygrammes

In a Riemannian manifold, one may define a geodesic as a curve along which its tangent vector
is parallel transported. More precisely, if � is a curve expressed in coordinates xi by

� : t �→ xi(t) (3.1)

for a certain parameter t , and if τ denotes the tangent vector to �, namely

τ := d

dt
(3.2)

then � is a geodesic iff

∇τ τ = 0 (3.3)

where ∇ denotes covariant differentiation. Equivalently, one may write

τ(τ i) + �i
jk τ

j τ k = 0. (3.4)

In the holonomic frame {∂/∂xi}, the geodesic equation (3.4) becomes

d2xi

dt2
+ �i

jk

dxj

dt

dxk

dt
= 0. (3.5)

By analogy with (3.3), we define a vector field V as being euthygrammic iff

DVV = 0. (3.6)

Moreover, a euthygramme† is an integral curve of a euthygrammic vector field.
As a result of the coordinate expression (2.11) of D-differentiation, the criterion (3.6) of

euthygrammicity also reads

V (V i) + λijk V
jV k − A

i a

j b �e(a)(V b)V j = 0 (3.7)

which emphasizes the parallel with (3.4). When V i has been determined by (3.7),
euthygrammes are solutions of the system

dxi

dt
= V i(x1, . . . , xn). (3.8)

It is important to note that, in order to define a euthygramme, it is not possible, in general,
to imitate the definition (3.3) of a geodesic as

Dττ = 0. (3.9)

To determine why (3.9) is not valid in general, let us expand it in a basis according to (2.11):

τ(τ i) + λijk τ
j τ k − A

i a

j b �e(a)(τ b)τ j = 0. (3.10)

Because the tangent vector τ is only defined along�, the components τ b appearing in (3.10)
are functions of the parameter t describing �, so the contribution �e(a)(τ b) is devoid of meaning
(in general), unless the operator Ai a

j b �e(a)(·)τ j happens to differentiate purely along �. In

other words, (3.10) only makes sense if Ai a

j b �e(a)τ j is proportional to the tangent vector τ .
Such is the case when

A
i a

j b �e(a)τ j = !i
bτ (3.11)

for a certain !i
b, or, equivalently, when

A
i a

j b = !i
b δ

a
j . (3.12)

† This new term is the anglicization of the Greek word ευϑυγραµµoν, used by Aristotle [5] to mean a straight
line. Indeed, in our present context, a euthygramme is a straight line (in a generalized sense), as is a geodesic in a
Riemannian manifold.
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This kind ofD-differentiation is referred to as being of the particular type, as opposed to being
of the general type, when A

i a

j b is arbitrary.
When (3.12) is satisfied, the equation of the euthygramme reads

0 = τ(τ i) + λijk τ
j τ k − !i

j τ (τ
j ) (3.13)

= (δi j − !i
j )τ (τ

j ) + λijk τ
j τ k. (3.14)

In particular, in the holonomic frame {∂/∂xi}, the euthygramme (3.14) becomes

(δi j − !i
j )

d2xj

dt2
+ λijk

dxj

dt

dxk

dt
= 0 (3.15)

which is a clear generalization of (3.5).
On the other hand, for D-differentiation of a more general type, there is no option but

to define euthygrammes by the two-step definition (3.7), (3.8). The advantage of (3.15)
over (3.7), (3.8) is that the former is a system of ordinary differential equations, whereas
the latter involves partial differentiation. In the application that follows, however, we shall
only need D-differentiation of the particular type, so the central role will be played by (3.15).

4. Application to electrons in crystals

When an electron moves in a crystal, it is subjected to two kinds of force: internal forces,
arising from the crystalline lattice, and forces produced by the external fields in which the
crystal may be residing. When the external forces F are treated as perturbations of the internal
ones, it is possible to establish [6, 7] that, to first order in the perturbation, the semiclassical
position X(t) of the electron is given by the following generalization of Newton’s second law:

µA
B Ẍ

B = FA (4.1)

where µA
B is the effective-mass tensor of the electron. Henceforth, as in (4.1), we shall use

capital letters and capital indices for quantities referring to Cartesian coordinates.
Quantum mechanics enables one to calculate [6, 7] the effective mass in terms of the

energy functions of the electron in the crystal, in the absence of the perturbation. The
determination of µA

B , however, does not concern us here. We are rather going to establish
that (4.1) is a euthygramme of an operator of D-differentiation to be obtained. We shall see,
in particular, that the effective mass is enciphered in the tensor !i

j appearing in (3.15), and
that the transformation law (2.9) for λijk is satisfied.

To this end, let us begin by expressing (4.1) in curvilinear coordinates xi , so as to make
λijk appear. Let us perform the change of variables

XA := ξA(xi) (4.2)

for known functions ξA. (All quantities referring to curvilinear coordinates will be written
with lower-case letters.) The velocity ẊA becomes thus

ẊA := JA
j ẋ

j (4.3)

in which J denotes the Jacobian matrix of the coordinate transformation:

JA
j := ∂ξA

∂xj
:= ξ,

A
j . (4.4)

The inverse Jacobian matrix K relates then the Cartesian holonomic frame {∂/∂XA} to the
curvilinear holonomic frame {∂/∂xi} by

∂

∂XA
= ∂xi

∂XA

∂

∂xi
:= Ki

A

∂

∂xi
KJ = I. (4.5)
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Moreover, after differentiating (4.3) with respect to the time, one finds

ẌA = JA
j ẍ

j + JA
j,k ẋ

kẋj . (4.6)

Therefore, the generalized version of Newton’s second law becomes

FA = µA
B(J

B
j ẍ

j + JB
j,k ẋ

j ẋk) (4.7)

which implies, after multiplying by Ki
A,

f i := Ki
A F

A (4.8)

= Ki
A µ

A
B(J

B
j ẍ

j + JB
j,k ẋ

j ẋk). (4.9)

To simplify the right-hand side of (4.9), let us rewrite µA
B differently:

µA
B = µA

C δ
C
B

= µA
C J

C
l K

l
B (4.10)

to obtain

f i = Ki
A µ

A
C J

C
l(K

l
B J

B
j ẍ

j + Kl
B J

B
j,k ẋ

j ẋk)

= Ki
A µ

A
C J

C
l(ẍ

l + Kl
B J

B
j,k ẋ

j ẋk)

= µi
l(ẍ

l + Kl
B J

B
j,k ẋ

j ẋk) (4.11)

where the transformation law for tensor indices has been exploited, in the form

µi
l = Ki

A µ
A
C J

C
l. (4.12)

It follows from (4.11) that the equation of motion (4.1) becomes

f i = m[(δi l − !i
l)ẍ

l + λijk ẋ
j ẋk] (4.13)

where m is a constant (representing a mass scale), provided the quantities !i
j and λijk are

identified as

m(δij − !i
j ) := µi

j = Ki
A µ

A
C J

C
j (4.14)

λijk := (δi l − !i
l)K

l
B J

B
j,k. (4.15)

The relationship (4.14) may be inverted to isolate !i
j as being

!i
j = δij − 1

m
µi

j . (4.16)

Furthermore, after comparing (4.13) with the equation (3.15) of a particular type of
euthygramme, one sees that the generalized version (4.1), (4.13) of Newton’s second law
may equivalently be written

mDττ = f (4.17)

where τ is the tangent vector to the trajectory. In (4.17), the operator of D-differentiation is
characterized by the coefficients λijk of (4.15), (4.16) and the quantities Ai a

j b given by

A
i a

j b = δaj !
i
b (4.18)

= δaj

(
δib − 1

m
µi

b

)
. (4.19)

We have thus managed to interpret geometrically the motion of electrons in a crystal: in
the absence of any external perturbation, electrons follow a euthygramme; on the other
hand, perturbative forces cause the trajectory to deviate from a euthygramme, in accordance
with (4.17).



6986 D J Hurley and M A Vandyck

Note that, by virtue of (2.12), (2.13), (4.19), the value of the tensor Ai a

j b corresponds
neither to that describing Lie differentiation, nor to that describing covariant differentiation,
in general. This means that we have here a genuine example where neither Lie differentiation
nor covariant differentiation suffices, in general, to provide a geometrical interpretation of the
motion. Of course, ifµi

j = mδij , the generalized law (4.1) is identical with Newton’s original
second law

mẌA = FA. (4.20)

In this very special case, the tensor A
i a

j b of (4.19) vanishes, which indicates that the
corresponding operator of D-differentiation does reduce to covariant differentiation. Such
had to be the case, because it is well known [8] that Newton’s second law (4.20) may be
written

m∇τ τ = f (4.21)

in terms of covariant differentiation.
At this stage, it is important to recall that, whenever a set of coefficients λijk has been

prescribed, it must be ascertained that the transformation rule (2.9) is satisfied. With our
present notation, the transformation matrix relating the bases {∂/∂XA} and {∂/∂xi} is the
inverse Jacobian matrix K , as in (4.5), so that the transformation rule (2.9) reads

λijk = Ki
A λ

A
BC J

B
j J

C
k − Ki

A J
B
j A

A C
B D

∂JD
k

∂XC
+ Ki

A

∂JA
j

∂XC
JC

k (4.22)

which the special form (4.18) for AA C
B D enables one to simplify as

λijk = Ki
A λ

A
BC J

B
j J

C
k − Ki

A J
B
j δ

C
B !

A
D

∂JD
k

∂XC
+ Ki

A

∂JA
j

∂XC
JC

k

= Ki
A λ

A
BC J

B
j J

C
k − Ki

A J
B
j !

A
D

∂JD
k

∂XB
+ Ki

A

∂JA
j

∂XC
JC

k. (4.23)

By virtue of the chain rule, all the derivatives appearing in (4.23) may be expressed in
terms of the new variables xi , to yield

λijk = Ki
A λ

A
BC J

B
j J

C
k − Ki

A J
B
j !

A
D(K

l
B J

D
k,l) + Ki

A(K
l
C J

A
j,l)J

C
k

= Ki
A λ

A
BC J

B
j J

C
k − Ki

A !
A
D JD

k,j + Ki
A J

A
j,k

= Ki
A λ

A
BC J

B
j J

C
k − Ki

B !
B
A J

A
k,j + Ki

A J
A
j,k. (4.24)

To simplify this expression, recall that JA
k,j = JA

j,k , and then, by elementary algebraic
manipulations, obtain

λijk = Ki
A λ

A
BC J

B
jJ

C
k − (Ki

B !
B
A − Ki

A)J
A
j,k

= Ki
A λ

A
BC J

B
j J

C
k − (Ki

B !
B
C δ

C
A − δi l K

l
A)J

A
j,k

= Ki
A λ

A
BC J

B
j J

C
k − (Ki

B !
B
C J

C
l K

l
A − δi l K

l
A)J

A
j,k

= Ki
A λ

A
BC J

B
j J

C
k − (Ki

B !
B
C J

C
l − δi l)K

l
A J

A
j,k

= Ki
A λ

A
BC J

B
j J

C
k + (δi l − !i

l)K
l
A J

A
j,k. (4.25)

When the final form (4.25) is compared to the prescription (4.15), one sees that the
transformation rule (2.9) is satisfied iff

λABC = 0 (4.26)

and λijk is calculated by (4.15).
The conclusion that we have reached is thus that all our formalism is self-consistent,

and that the analogy with covariant differentiation is perfect: for Cartesian coordinates, the
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coefficients λABC vanish, just as the Christoffel symbols do for covariant differentiation.
Furthermore, for curvilinear coordinates, the coefficients λijk are given by (4.15), and it is
not very difficult to prove that (4.15) contains the Christoffel symbols in the special case
!i

j = 0.

Remark. The proper geometrical interpretation of the equation of motion (4.1) has been
established in detail above, using D-differentiation. It is possible, however, at the price
of losing the geometrical interpretation of some of the framework, to provide a different
geometrization of (4.1), which does not employ general D-differentiation, but only covariant
differentiation.

More precisely, one can show that (4.1) is equivalent to

∇τ τ = a (4.27)

where a is defined by

ai := νij f
j νik µ

k
j := δij (4.28)

and f i is as in (4.8). The covariant derivative appearing in (4.27) must be calculated via the
Christoffel symbols of the fictitious metric g†

ij given by

g
†
ij := µAB

m
JA

i J
B
j (4.29)

wherem is a constant representing a mass scale. The metric g†
ij has no geometrical significance:

it constitutes a purely artificial concoction to recast (4.1) in the coordinate-independent
language (4.27), using only covariant differentiation.

Establishing this assertion is not of much significance for our purposes. Therefore, only
a few brief comments will suffice.

One begins by evaluating the Christoffel symbols [ijk]† of the first kind for g†
ij as being

[ijk]† = µAB

m
JA

i J
B
j,k (4.30)

with the notation of (4.4). A dagger has been attached to these Christoffel symbols to recall
that they correspond to the fictitious metric g†

ij . Then, one defines the inverse metric g†ij by

g†ij := mνPQ Ki
P K

j
Q νPA µAQ = δP Q (4.31)

and one employs this result to express the Christoffel symbols of the second kind for g†
ij in the

form

{ijk}† := g†ia[ajk]† = Ki
A J

A
j,k. (4.32)

The combination of (4.27) with (4.32) yields an equation that is equivalent to (4.11), thus
proving (4.27).

Let us emphasize† that the formalism (4.27)–(4.29) is not the one that we recommend
as a geometrical interpretation of the motion of electrons in crystals, but rather (4.17)–(4.19).
This is because (4.27)–(4.29), albeit mathematically equivalent to (4.17)–(4.19), is based on a
metric (g†

ij ) lacking physical meaning. In other words, the physical metric of three-dimensional
ambient space is the one required, when Schrödinger’s equation is set up, to quantize the kinetic
part of the Hamiltonian, whereas the formalism (4.27)–(4.29) involves the fictitious metric g†

ij .
On the other hand, the framework (4.17)–(4.19), which is based on D-differentiation,

is independent of the metric. Indeed, nowhere does the metric appear in the component
expression (2.11) for the D-derivative of a vector field. (D-differentiation is thus purely

† The authors would like to thank the referee, who pointed out the desirability of insisting on this point.
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affine.) Therefore, the framework (4.17)–(4.19) does not interfere with the metric structure of
space, which retains its usual physical interpretation. In fact, we only mentioned the alternative
formalism (4.27)–(4.29) for the sake of mathematical completeness, and we shall henceforth
discard it.

At this stage, we have at our disposal the general theory of electrons in crystals. Given that
the concept of D-differentiation may be unfamiliar to some readers, we are going to illustrate
the general construction, in the next section, by applying the framework (4.17)–(4.19) to a well
known ‘text-book’ problem, namely the motion of an electron in a particular crystal subjected
to a uniform magnetic field.

5. Simple illustration

Following [7], we shall consider the motion of an electron of charge q in the neighbourhood
of the conduction-band edge point of either a silicon or a germanium crystal. The reader is
referred to [7] for physical details.

In accordance with [7], we shall assume that the energy surfaces εn(k) generated by the
crystal, for a wave of wavevector k, are ellipsoids of revolution. By an appropriate choice of
the Cartesian axes {∂/∂XA}, one may thus write [7]

2h̄−2εn(k) = (k2
1 + k2

2)/mt + k2
3/ml (5.1)

in which mt and ml are two parameters, interpreted as the ‘transversal mass’, and the
‘longitudinal mass’, respectively.

Furthermore, the laws of quantum mechanics [6, 7] imply that the inverse effective
mass (1/µ)AB is related to the energy surfaces by

(1/µ)AB = 1

h̄2

∂2εn

∂kA∂kB
. (5.2)

In the particular case of (5.1), a simple calculation yields then

µA
B =

(
mt 0 0
0 mt 0
0 0 ml

)
. (5.3)

In addition, the crystal is subjected to an external magnetic field B of the form

B = β

(
sin α

∂

∂X1
+ cosα

∂

∂X3

)
(5.4)

where the constant β is the magnitude of the field, and α denotes the angle between the field
and the third axis. The external force F experienced by the electron moving in the crystal with
a velocity V is therefore given by the Lorentz force

F = q

c
V × B (5.5)

in the Gaussian units employed in [7].
In order to apply the geometrical framework (4.17)–(4.19), we firstly note that the

coordinates that we have selected are Cartesian, so that the lower-case coordinates x and the
upper-case coordinates X, introduced in (4.2), coincide. Consequently, the Jacobian matrix
JA

j of (4.4) is trivial:

JA
j = δAj . (5.6)
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This information, combined with (5.3) and the definition (4.12), (4.19), yields the quantities
A
i k

j l as being

A• C
B • = δCB

( 1 − mt/m 0 0
0 1 − mt/m 0
0 0 1 − ml/m

)
(5.7)

where the entries indicated on the left-hand side by dots refer to the row index and the column
index of the matrix on the right-hand side.

The next element required to evaluate the operator of D-differentiation is the set of
coefficients λABC . By virtue of (4.26), all these coefficients vanish, because the coordinates
are Cartesian.

Moreover, let τ denote the tangent to the trajectory XA(t) of the electron. (It is physically
interpreted as the velocity of this electron.) One has thus

τ = d

dt
= ẊA ∂

∂XA
. (5.8)

Consequently, when the component expansion (2.11) of D-differentiation is used (with the
appropriate values for λABC and A• C

B •), the final result for the D-derivative Dττ reads

Dττ = mt

m

(
τ [τ 1]

∂

∂X1
+ τ [τ 2]

∂

∂X2

)
+
ml

m
τ [τ 3]

∂

∂X3
(5.9)

= mt

m

(
Ẍ1 ∂

∂X1
+ Ẍ2 ∂

∂X2

)
+
ml

m
Ẍ3 ∂

∂X3
. (5.10)

Finally, after an elementary calculation based on (5.4), (5.5), one finds, for the external
force F , the expression

F = (qβ/c)

[
(Ẋ2 cosα)

∂

∂X1
+ (Ẋ3 sin α − Ẋ1 cosα)

∂

∂X2
− (Ẋ2 sin α)

∂

∂X3

]
(5.11)

which enables one to formulate the equation of motion (4.17), in matrix language, as[
mt 0 0
0 mt 0
0 0 ml

][
Ẍ1

Ẍ2

Ẍ3

]
= (qβ/c)

[
Ẋ2 cosα

Ẋ3 sin α − Ẋ1 cosα
−Ẋ2 sin α

]
. (5.12)

This is a linear system of ordinary differential equations for XA(t).
There is no difficulty in proving that (5.12) admits a solution of the kind

ẊA = KAeiωt (5.13)

for certain (non-vanishing) constants KA and ω, provided ω reads

ω = (qβ/c)

[
sin2 α

mtml
+

cos2 α

m2
t

]1/2

. (5.14)

In the context of Solid-State Physics, ω is interpreted [7] as the cyclotron resonant frequency,
and the value (5.14) provided by our geometrical framework is identical with that stated in [7],
as it should be.

It should be noted that the above treatment, based on Cartesian coordinates, is readily
adapted to curvilinear coordinates, for instance cylindrical coordinates (r, θ, z). In this case,
one would identify the coordinates XA and xi of (4.2) as

X1 = r cos θ X2 = r sin θ X3 = z XA = (X, Y, Z) xi = (r, θ, z)

(5.15)
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and the Jacobian matrix JA
j would now become non-trivial.

The effective mass tensor, in curvilinear coordinates, would then be obtained from its
Cartesian components µA

B by (4.12), whereas the quantities A
i k

j l would be calculated
via (4.19). The coefficients λijk would be non-vanishing, and would follow from (4.15), (4.16).
Finally, all this would be combined with the component expansion (2.11) of the operator of
D-differentiation, to express the equation of motion (4.17), very much as we did above in
Cartesian coordinates.

6. Conclusion

In this article, we have shown how D-differentiation sheds light on the motion of electrons
in a crystal. This required introducing the concepts of a euthygrammic vector field and a
euthygramme.

A vector field V was defined, in section 3, as being euthygrammic iff it is ‘D-transported’
along itself, in the sense that

DVV = 0. (6.1)

A euthygramme is then an integral curve of a euthygrammic vector field.
We also established that, when D-differentiation is characterized by a tensor field A

i a

j b

of the form

A
i a

j b = !i
b δ

a
j (6.2)

for a certain !i
b, the equation of a euthygramme with tangent vector τ may be expressed as

Dττ = 0 (6.3)

which circumvents the need for considering euthygrammic vector fields to define
euthygrammes. A more detailed study of euthygrammes will be provided in [9].

In section 4, we investigated the semiclassical motion of an electron in a crystal. We
saw that the internal forces arising from the crystalline lattice are enciphered in the field !i

b

of (6.2), via the effective mass µi
b of the electron, as

A
i a

j b = !i
b δ

a
j =

(
δib − 1

m
µi

b

)
δaj , (6.4)

where m denotes a mass scale, for instance the mass of the electron (in vacuo).
In the presence of a perturbative external force f , the trajectory of an electron reads

mDττ = f (6.5)

in which the operator D is based on the coefficients A
i a

j b of (6.4). Consequently, when
no perturbation acts, the electron follows a euthygramme, whereas a perturbation causes the
trajectory to deviate from that euthygramme, in accordance with (6.5).

We emphasized that the operator D constructed from (6.4) reduces neither to Lie
differentiation nor to covariant differentiation, in general. The equation of motion (6.5)
provides thus an example where neither Lie differentiation nor covariant differentiation suffices
to produce a completely geometrical interpretation of the trajectory. Indeed, an alternative
formulation was developed, which involved only covariant differentiation, but it required the
introduction of the fictitious metric (4.29), which is devoid of direct geometrical meaning.
(That alternative formulation was therefore eventually discarded.) An additional advantage of
expressing the equation of motion (6.5) with D-differentiation is that (6.5) does not need any
metric, so it is purely affine.
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Of course, the results presented in this article do not, by any means, invalidate the
traditional method [6,7] for obtaining the trajectories of electrons in crystals by solving (4.1),
just as (for instance) the possibility of re-interpreting Newton’s second law as a geodesic in a
Riemannian space does not invalidate the traditional equation mẌ = F . However, as classical
mechanics, relativity and gauge theories have shown, being able to express a physical problem
in geometrical terms often leads to further conceptual insight. Moreover, the laws of geometry
may then sometimes be invoked to simplify even the computational aspects of the problem.

This feature is clearly exemplified, again, by the re-interpretation of mẌ = F as a
Riemannian geodesic: the former approach is only valid in an inertial frame, whereas the
geometrical formulation, being based on the coordinate-free concept of a geodesic, holds in an
arbitrary frame, which means that the geometrical method takes pseudo-forces automatically
into account. Something similar may be said of our geometrical interpretation of the trajectories
of electrons in crystals, where pseudo-forces are determined by the coefficients λijk .
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